Magnetoreception in animals
نویسندگان
چکیده
mals can detect Earth’s magnetic field has traveled the path from ridicule to well-established fact in little more than one generation. Dozens of experiments have now shown that diverse animal species, ranging from bees to salamanders to sea turtles to birds, have internal compasses. Some species use their compasses to navigate entire oceans, others to find better mud just a few inches away. Certain migratory species even appear to use the geographic variations in the strength and inclination of Earth’s field to determine their position. But how animals sense magnetic fields remains a hotly contested topic. Whereas the physical basis of nearly all other senses has been determined, and a magnetoreception mechanism has been identified in bacteria, no one knows with certainty how any animal perceives magnetic fields. Finding this mechanism is thus the current grand challenge of sensory biology. The problem is difficult for several reasons. First, humans do not appear to have the ability to sense magnetic fields. Whereas most nonhuman senses, such as polarization detection and UV vision, are relatively straightforward extensions of human abilities, magnetoreception is not. As a result, neither intuitive understanding nor the medical literature on human senses provides much guidance. Another complicating factor is that biological tissue is essentially transparent to magnetic fields, which means that magnetoreceptors, unlike most other sensory receptors, need not be located on an animal’s surface and might instead be anywhere in the body. That consideration transforms a routine two-dimensional visual inspection into a three-dimensional search requiring advanced imaging techniques. Another impediment is that large accessory structures for focusing and otherwise manipulating the field—the analogs of eardrums and lenses—are unlikely to exist because few materials of biological origin affect magnetic fields. Indeed, magnetoreception might be accomplished by a small number of microscopic, possibly intracellular structures scattered throughout the body, with no obvious structure devoted to magnetoreception. Finally, the weakness of the interaction between Earth’s field and the magnetic moments of electrons and atoms, roughly one five-millionth of the thermal energy kT at body temperature, makes it difficult to even suggest a feasible mechanism. The weakness of the field does provide one major advantage to researchers: It greatly limits the list of possible physical detection mechanisms. Any suitable mechanism would presumably have to involve a very sensitive detector, amplification of magnetic interactions, or isolation from the thermal bath. Interestingly, the three main mechanisms that have so far been proposed—electromagnetic induction, ferrimagnetism, and chemical reactions involving pairs of radicals—are each based on one of those designs. The electromagnetic induction hypothesis, for example, is based on the extremely sensitive electroreceptive abilities of some marine species. The various hypotheses involving magnetite or other ferrimagnetic materials are based on the powerful interaction of such materials with magnetic fields. Finally, the radicalpair mechanism relies on the relatively efficient isolation of electron and nuclear spins from other degrees of freedom. Different animals may detect magnetic fields in different ways, and behavioral experiments and microscopic examinations of possible magnetoreceptors have both yielded results that are consistent with all three mechanisms. Nevertheless, a magnetoreceptive organ has not yet been identified with certainty in any animal. In this article we discuss the physics of the three main mechanisms that have been proposed and highlight some of the critical evidence in support of each.
منابع مشابه
Shedding Light on Vertebrate Magnetoreception
We review the challenges and recent progress in elucidating the physiological basis of animal magnetoreception. Behavioral and theoretical studies suggest a link between photoreception and magnetoreception in some animals. Neurophysiological studies have the potential to prove this link and identify the location of and the mechanism underlying the magnetoreception system.
متن کاملPhotoreceptor-based magnetoreception: optimal design of receptor molecules, cells, and neuronal processing.
The sensory basis of magnetoreception in animals still remains a mystery. One hypothesis of magnetoreception is that photochemical radical pair reactions can transduce magnetic information in specialized photoreceptor cells, possibly involving the photoreceptor molecule cryptochrome. This hypothesis triggered a considerable amount of research in the past decade. Here, we present an updated pict...
متن کاملMagnetoreception and Electromagnetic Field Effects: Sensory Perception of the Geomagnetic Field in Animals and Humans
This chapter reviews numerous discoveries that have been made during the past 15 years concerning the ability of living organisms to respond to the geomagnetic field. These include (1) the magnetotactic response of bacteria and protozoans, (2) magnetic effects on homing and navigational behavior by migrating animals, (3) the discovery of magnetically influenced signals in nerve fibers from the ...
متن کاملLaboratory behavioural assay of insect magnetoreception: magnetosensitivity of Periplaneta americana.
A relatively simple all-laboratory behavioural assay of insect magnetoreception has been developed. We found non-conditioned reactions of American cockroach to the periodical shifts of the geomagnetic field. The movement activity of animals individually placed into Petri dishes was scored as a number of body turns. Test groups were exposed to a 90-min interval with the horizontal component of t...
متن کاملMagnetic orientation in the mealworm beetle Tenebrio and the effect of light.
There is evidence for both light-dependent and light-independent mechanisms of magnetoreception of terrestrial animals. One example of a light-independent mechanism frequently cited is the magnetic compass of the mealworm beetle (Tenebrio molitor). We found that magnetoreception of the mealworm beetle per se is a replicable phenomenon but that, in contrast to earlier findings, Tenebrio only exh...
متن کاملThe Effect of Extremely Low Frequency Alternating Magnetic Field on the Behavior of Animals in the Presence of the Geomagnetic Field
It is known that the geomagnetic field can influence animal migration and homing. The magnetic field detection by animals is known as magnetoreception and it is possible due to two different transduction mechanisms: the first one through magnetic nanoparticles able to respond to the geomagnetic field and the second one through chemical reactions influenced by magnetic fields. Another behavior i...
متن کامل